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Abstract. We evolve virtual photon parton densities up to the SUSY threshold and higher using coupled
inhomogeneous DGLAP differential equations. Reliable input parameterizations were available from the
c-quark threshold. Limited P 2 (target photon virtuality) dependence is observed. The difference to the
photon structure function is shown to be significant with the introduction of SUSY dependent splitting
functions. A negligible difference is observed by letting the gluino mass enter after the squark mass. An
effort is made to include the squark threshold effect in such a way that both the renormalization group
equations are satisfied and the perturbative calculation is reproduced.

1 Introduction

There has recently been a great deal of interest in the
structure function of the photon. This is obtained from
the scattering cross-section between a highly virtual pho-
ton with large square momentum Q2 used as a probe and
a nearly on-shell target photon with square momentum
P 2, (P 2 � Q2). If the target square momentum is also
large (whilst maintaining the inequality P 2 � Q2), the
entire structure function can be calculated using renormal-
ization group improved perturbation theory, whereas for
low P 2 one is limited to a determination of the Q2 depen-
dence and, as in the case of deep-inelastic electron-proton
scattering, one needs input information on the structure
functions at some (low) value of Q2, which cannot be de-
termined by perturbation theory. A study of the photon
structure function as a function of P 2 therefore provides
information on the extrapolation between the perturba-
tive and non-perturbative regimes of QCD.

Heuristically, one talks about separating the structure
function into “direct” and “resolved” contributions. The
former being exactly calculable in perturbation theory and
the latter involving the uncalculable probability that the
photon splits into other fundamental particles before being
probed. Whereas such a picture is useful at the leading or-
der level, higher order corrections mix these contributions.
A formal and more precise analysis was first proposed by
Witten [1] who pointed out that in an operator product
expansion for photon-photon scattering the set of opera-
tors used in the case of photon-proton scattering must be
augmented by a tower of photonic operators, whose matrix
elements with the target photon are of order unity. In the
(more intuitive) DGLAP approach one argues that since
the probability of finding a particle other than a photon
inside a photon is of order αem, the probability of find-
ing a “photon inside a photon” is unity plus corrections
of order αem. The DGLAP analysis must then be aug-

mented by further off-diagonal splitting functions Kq and
KG which are interpreted as the perturbative probability
for a photon to emit quark or gluon with a given fraction
of its longitudinal momentum.

Interest in photon structure functions has recently
been rekindled by the prospect of a future high-energy
electron-positron collider with centre-of-mass energy of up
to 1 TeV. Such a machine would enable an investigation
of the photon structure function over a sufficiently wide
range of Q2 and P 2 to provide a stringent test of the evo-
lution of these structure functions. Moreover, if the postu-
lated existence of Supersymmetry (SUSY) turns out to be
vindicated, these structure functions will reflect the ex-
istence of supersymmetric partners within photons. The
contribution to the structure function due to the crossing
of the threshold for the production of squarks, was first
calculated by Reya [7]. However, a consistent analysis of
the effect of supersymmetry on the photon structure func-
tion requires a full analysis of the enlarged DGLAP for-
malism in which above the SUSY threshold the standard
splitting functions are augmented with splitting functions
involving squarks and gluinos. This paper reports on such
an analysis and displays results in which it can be seen
that SUSY gives rise to a measurable increase in the Q2

evolution of the structure photon structure function above
threshold. Care must be taken to ensure a consistent treat-
ment of the threshold behaviour for squark production as
one passes through the threshold and this is discussed in
detail.

The outline of the paper is as follows: In Sect. 2 we dis-
cuss the formalism, outlining the extension of the evolu-
tion equations to the regime in which squarks and gluinos
are excited. We also give a description of the threshold
treatment. Section 3 displays our results obtained from
numerical solution of the enlarged evolution equations. We
show the dependences on the SUSY threshold and on the
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square momentum P 2 of the target photon as well as on
the usual variables Q2 and Bjorken-x. In Sect. 5 we discuss
our conclusions.

2 Formalism

We follow the formalism of Glück and Reya [2]. We will
initially be concerned with quark and gluon distributions
up to the SUSY threshold.

The nonsinglet (Tl) and singlet (Σ) sectors are treated
separately,

T3 = 2(qu − qd)
T8 = 2(qu + qd − 2qs)
T15 = 2(qu + qd + qs − 3qc)
T24 = 2(qu + qd + qs + qc − 4qb)
T35 = 2(qu + qd + qs + qc + qb − 5qt)

Σ = 2
f∑
i

qi

where qu, qd, qs, qc, qb and qt refer to the relevant quark
distributions. The factor of 2 accounts for the anti-quark
distribution since for a photon qi = q̄i. f runs over all
relevant quark flavours. Each quark distribution is zero at
and below its threshold hence each new non-singlet (Tl) is
equal to the singlet (Σ) at threshold.

The evolution is controlled by the following inhomoge-
neous DGLAP differential equations,

dTl

d lnQ2 = PTT ⊗ Tl + KT (2.1)

for each singlet (Tl) and the coupled equations,

dΣ

d lnQ2 = PΣΣ ⊗Σ + PΣG ⊗G + KΣ

dG

d lnQ2 = PGΣ ⊗Σ + PGG ⊗G + KG (2.2)

for the singlet (Σ) and gluon (G) sector.
For each distribution F (x,Q2) above, the convolution

⊗ is defined as,

Pij ⊗ Fj ≡
∫ 1

x

dy

y
Pij

(
x

y
,Q2

)
Fj(y,Q2) (2.3)

where Pij(x,Q2) consists of the splitting functions p(0)
ij

in Leading Order (LO) and p
(1)
ij in next to leading order

(NLO),

Pij =
[αs

2π

]
p
(0)
ij +

[αs

2π

]2
p
(1)
ij + · · · (2.4)

The main difference between the evolution of the pho-
ton structure function and that of the proton structure

function is the presence of the inhomogeneous Ki terms
in the evolution equations. Essentially these consist of γ →
quark and γ → gluon splitting functions. They appear in
the evolution equations without any convolution with a
parton distribution since the “photon density” inside a
photon is taken to be δ(1 − x) up to corrections of order
αem.

Ki =
[αem

2π

]
k

(0)
i +

[αem

2π

] [αs

2π

]
k

(1)
i + · · · (2.5)

F γ
2 in (LO) is given by,

1
x
F γ

2 =
{
qNS + 〈e2〉Σ}

(2.6)

where

qNS =
∑

f

(
e2q − 〈e2〉) (qi + q̄i) , 〈ek〉 =

1
f

∑
f

ek
q

αs(Q2) evolves according to

αs(Q2)
4π

=
1

β0 lnQ2/Λ2 − β1

β3
0

ln (lnQ2/Λ2)
(lnQ2/Λ2)2

(2.7)

where β0 = 11 − 2f/3 and β1 = 102 − 38f/3. All expres-
sions refer to theMS renormalization scheme hence we use
ΛMS which depends f . We evolve in (NLO) to the t-quark
threshold and then we evolve in (LO) thereafter by set-
ting β1 to zero. This is because we can only evolve in (LO)
above the SUSY threshold so in order to compare F γ

2 for
different values of the squark mass Ms we must evolve in
the same way from the t-quark threshold. Quark masses
are taken as M(c) = 1.5GeV, M(b) = 4.5GeV, M(t) =
174GeV .

Our input data were parameterizations [3] of virtual
photon parton densities taken at the c-quark threshold. A
c-quark mass of 1.5GeV limits P 2 to less than 1.8GeV
which gives a small ratio r = P 2/Q2 	 10−6 at high Q2.
We could not find reliable parameterizations at higher Q2

that were dependent on P 2.
In order to evolve to the SUSY threshold we use (LO)

and (NLO) splitting functions [4] in (2.4) and inhomoge-
neous terms [2] in (2.5).

Above the SUSY threshold Ms we are also concerned
with squark and gluino distributions. As before we have a
nonsinglet (Sl) and singlet (Γ ) sector,

S3 = 4(su − sd)
S8 = 4(su + sd − 2ss)
S15 = 4(su + sd + ss − 3sc)
S24 = 4(su + sd + ss + sc − 4sb)
S35 = 4(su + sd + ss + sc + sb − 5st)

Γ = 4
f∑
i

si

where su, sd, ss, sc, sb and st refer to the squark distribu-
tions. The factor of 4 arises because sR

i = sL
i = s̄R

i = s̄L
i .
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For simplicity all squark distributions start at zero at the
SUSY threshold corresponding to a common squark mass
Ms, although we could introduce them in steps as before
with the quarks. The gluino distribution starts at zero at
the gluino threshold corresponding to a gluino mass Mg.

The evolution is controlled by the following inhomoge-
neous DGLAP differential equations. Each set of nonsin-
glets are coupled ie. T3 with S3, T8 with S8, etc...

dTl

d lnQ2 = PTT ⊗ Tl + PTS ⊗ Sl + KT

dSl

d lnQ2 = PST ⊗ Tl + PSS ⊗ Sl + KS (2.8)

Given that in general the gluino mass Mg is greater than
the squark mass Ms the nonsinglet sector evolution is
given in the region 4M2

g > Q2 ≥ 4M2
s by,

dΣ

d lnQ2 = PΣΣ ⊗Σ + PΣG ⊗G + PΣΓ ⊗ Γ + KΣ

dG

d lnQ2 = PGΣ ⊗Σ + PGG ⊗G + PGΓ ⊗ Γ + KG

dΓ

d lnQ2 = PΓΣ ⊗Σ + PΓG ⊗G + PΓΓ ⊗Γ + KΓ (2.9)

and in the region Q2 ≥ 4M2
g by,

dΣ

d lnQ2 = PΣΣ⊗Σ+PΣG⊗G+PΣΓ ⊗Γ +PΣL⊗L+KΣ

dG

d lnQ2 = PGΣ⊗Σ +PGG⊗G+PGΓ ⊗Γ +PGL⊗L+KG

dΓ

d lnQ2 = PΓΣ⊗Σ +PΓG⊗G+PΓΓ ⊗Γ +PΓL⊗L+KΓ

dL

d lnQ2 = PLΣ⊗Σ + PLG⊗G+ PLΓ ⊗Γ + PLL⊗L+KL

(2.10)
where L is the gluino distribution. In the limit where the
gluino mass Mg is taken to be equal to the squark mass
Ms we do not need (2.9).

The Pij(x,Q2) are now a different SUSY set of (LO)
splitting functions [5]. In analogy with the Ki used below
the SUSY threshold,KS andKΓ correspond to the photon
to squark splitting functions and KL corresponds to the
photon to gluino splitting functions. We also account for
the fact that the running of the strong coupling is now
controlled by the SUSY β−function [6], i.e. we take β0 =
9 − f/2 and β1 = 54 − 17f/3.

The tree level squark contribution to F γ
2 (Appendix A)

is important in determining the γ → squark splitting func-
tion i.e., the squark inhomogeneous terms in (2.8), (2.9)
and (2.10). KS and KΓ , apart from their respective coef-
ficients, are essentially the same in (LO) and are obtained
from the tree level contribution to F γ

2 for squark produc-
tion which is given in (A.1). We have obtained them in the
same way that the photon to quark splitting functions are

obtained from the tree level contribution to F γ
2 for quark

production,

k
(0)
S (x) = 2 × 3f

(〈e4 〉 − 〈e2 〉2) 2 (2x(1 − x)) (2.11)

k
(0)
Γ (x) = 2 × 3f 〈e2 〉 2 (2x(1 − x)) (2.12)

where the factor of 2× accounts for left and right handed
squarks. The other coefficients are standard. The
(2x(1 − x)) accounts for the linear lnQ2 evolution of the
distributions in (LO), which is valid up to (ln(Q2/4M2

s ))
2.

As with the gluon splitting function the gluino splitting
function is zero in (LO),

k
(0)
L = 0 (2.13)

The full threshold condition for the production of
squarks is given by,

Q2 (1 − x− r x)
x

≥ 4M2
s (2.14)

which importantly depends both on x and Q2. We at-
tempt to apply this condition above Q2 = 4M2

s . At some
Q2 there will be a value of x, say xs(Q2), above which
squarks cannot be produced due to the this condition. A
number of convolutions, (2.3), must be performed in order
to calculate the change in each of the distributions as we
evolve in lnQ2. Any particular convolution evaluated at x
is an integral in a dummy variable y in the region y ≥ x.
Since all convolutions are done numerically SUSY split-
ting functions can be used for y < xs, where squarks can
be produced and standard splitting functions can be used
for y > xs, where squarks cannot be produced. The run-
ning of the strong coupling is affected by the existence of
SUSY particles. We allow for this by imposing continuity
of the coupling through the simplistic squark threshold at
Q2 = 4M2

s and using β0 = 11− 2/3fq − 2− 1/3fs. Essen-
tially this means that β0 in (2.7) changes from 7 to 3 above
Q2 = 4M2

s . However we impose the condition in (2.14) in
order to choose whether or not to use the SUSY altered
coupling to calculate the change in each distribution at a
particular x and Q2. This means that for any Q2 ≥ 4M2

s ,
F γ

2 with SUSY contributions will coincide with F γ
2 with-

out SUSY contributions for x > xs. F
γ
2 is unaltered by

SUSY contributions in the region x ≥ xs(Q2), as would
be expected. This is not an ideal strategy for incorporat-
ing the threshold condition in (2.14) since for Q2 < 4M2

s

there will always be an x < xs(Q2) such that squarks can
be produced. However it is an improvement on just using
Q2 ≥ 4M2

s as a squark threshold condition.
The contribution to F γ

2 from squark production, (A.1),
is obtained from ordinary perturbation theory and in-
cludes a term proportional to ln(Q2/4M2

s ), which is al-
ready accounted for asKS orKΓ . In order to approximate
the correct threshold behaviour we try to isolate the part
of (A.1) that is not used in the squark splitting functions
and introduce this contribution as Bsq

γ below.
Above the SUSY threshold F γ

2 is then obtained from
1
x
F γ

2 =
{
qNS + 〈e2〉Σ}

+
{
SqNS + 〈e2〉Γ }

+2 × 3f〈e4〉
[αem

4π

]
Bsq

γ (2.15)
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where the factor of 2× accounts for left and right handed
squarks. The Bsq

γ term is also subject to the threshold
condition in (2.14), meaning that it is not included in the
region x > xs.

Essentially what we do is to take the squark contri-
bution to F γ

2 and subtract off the (2x(1 − x)) part that
accounted for the lnQ2 dependence in k(0)

S and k(0)
Γ . Given

that the coefficient of Bsq
γ is

(
2 × 3f〈e4 〉αem/4π

)
in (2.15),

Bsq
γ = 4

{(
1

3 e4sq
αem

π x

)
×F γ

2,sq −2x(1−x) ln
(

Q2

4M2
s

) }

(2.16)
where F γ

2,sq is given in A.1, will give the correct contribu-
tion.

We note that the difference between using (A.1) and
(A.2) is negligible in our case because we are limited to
P 2 < 1.8GeV 2 at the c-quark threshold, giving an r 	
10−6 above the SUSY threshold.

However this is a different way of treating the thresh-
old behaviour from that in [2]. At Q2 � 4M2

s it satis-
fies the Renormalization Group equations since the dom-
inant part is in the inhomogeneous term. In the region
Q2 	 4M2

s this approach will reproduce the perturba-
tive calculation with the correct threshold behaviour up
to (ln(Q2/4M2

s ))
2. There should of course be a small mis-

match at large Q2 and large x. However we have eradi-
cated this by incorporating the threshold condition from
(2.14) into both the splitting functions and the Bsq

γ term
as explained above. Obviously (A.1) exhibits a functional
dependence on Q2 that is more complicated than just
lnQ2. This means that our choice of inhomogeneous
squark terms do not fully describe the Q2 evolution of F γ

2
and that our Bsq

γ term is also therefore an approximation.
This can result in a discontinuity in the region xs(Q2)
which we will show in our results in the next section.

We have not invoked the full theoretical framework for
dealing with heavy flavour contributions to the structure
function as decribed in [9] and [10] for example. This is
primarily because we are concerned with whether super-
symmetry exhibits a measurable effect on the structure
function rather than exact numerical predictions in the
threshold region.

Finally it should be noted how quickly F γ
2 changes

away from the threshold with decreasing x. In (A.1), the
term

v = [1 − 4M2
s x/Q

2(1 − x)]1/2

moves rapidly away from zero in decreasing x meaning
that the coefficients of

ln
(
1 + v

1 − v

)
and v

in (A.1) give rise to a real threshold contained in the Bsq
γ

term.
To summarize, we take parameterizations of quark and

gluon distributions inside a virtual photon at the c-thresh-
old. Using DGLAP inhomogeneous differential equations

0 0.2 0.4 0.6 0.8 1

Bjorken x

0

1

2

3

F
2 

/ α
em

Comparative DGLAP Evolution 
√P

2
 = 1.3 GeV, Ms = 175 GeV, Mg = 175, 300 GeV, √Q

2
 = 1000 GeV

SUSY Threshold
Without SUSY
With SUSY, Mg = 175 GeV
With SUSY, Mg = 300 GeV

Fig. 1. Comparative Evolution of Structure Function with and
without SUSY splitting functions. Difference due to a higher
gluino mass Mg is negligible

we evolve the relevant non-singlet, singlet and gluon dis-
tributions up to the SUSY threshold. From here we run
the distributions separately, including or not, the effects
of squarks and gluinos. At some

√
Q2 we form F γ

2 for the
virtual photon in such a way as to take account of the
SUSY threshold condition.

3 Results

The variable parameters of the evolution are the P 2 (tar-
get virtuality), Ms (squark mass), Mg (gluino mass), Q2

(incident virtuality) and Bjorken x. We took these in the
ranges,

0 ≤
√
P 2 ≤ 1300MeV

175GeV ≤ Ms ≤ 300GeV

175GeV ≤ Mg ≤ 300GeV

700GeV ≤
√
Q2 ≤ 1500GeV

and in all cases F γ
2 /αem is actually plotted.

Figure 1 shows a generalised evolution to 1000GeV .
The bottom graph corresponds to F γ

2 evaluated at the
SUSY threshold

√
Q2 = 2Ms = 350GeV . This serves as

a base reference since it is at this point that the SUSY
effects are included in the evolution. There is a consider-
able difference to F γ

2 on including supersymmetric effects.
We agree with the general conclusions made in [7] that F γ

2
with SUSY contributions is flatter and strongly increases
for decreasing values of x. Note that allowing the gluino
mass to be greater than the squark mass produces a neg-
ligible effect. Note also that the graphs coincide above the
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0 0.2 0.4 0.6 0.8 1

Bjorken x

0

1

2

3

F
2 

/ α
em

√P
2
 Dependence

Ms = 175 GeV, √Q
2
 = 1000 GeV

√P
2
 = 1.3 GeV

√P
2
 = 0.65 GeV

√P
2
 = 0 GeV

Fig. 2.
√

P 2 dependence of structure function for fixed squark
mass Ms at a fixed probe virtuality

√
Q2

squark threshold xs(Q2) given in (2.14), this being due to
it being incorporated into the splitting functions and the
Bsq

γ term, as described in the previous section.
From here on we plot Mg = Ms since we have shown

the Mg > Ms difference to be negligible.
Figure 2 shows P 2 dependence up to 1300MeV . We

are limited by our parameterizations in that they are re-
stricted in P 2 at the c-quark threshold. However non-
negligible differences can be noted in low x even at

√
P 2 =

1300MeV .
Figure 3 shows Ms dependence between 175GeV and

300GeV . The lowest graph is without the SUSY contribu-
tions. As the squark massMs increases, F

γ
2 approaches the

non-SUSY limit as if the non-SUSY graph corresponds to
exciting squarks of infinite mass. Also the thresholds move
to lower x as the threshold condition (2.14) requires higher
Q2 to produce squarks of higher mass. We can see that for
Ms = 300GeV there is a discontinuity around xs = 0.74.
This is due to the fact that our treatment of the squark
threshold using the Bsq

γ term in (2.15) is only approximate
as discussed in the previous section. The discontinuity is
more apparent forMs = 300GeV than forMs = 175GeV
since the error increases as the ratio 4M2

s /Q
2 approaches

unity.
Figures 4 and 5 show how F γ

2 varies with
√
Q2 at two

fixed values of x. All graphs show how the distributions
must approach the non-SUSY distribution for high Ms.
However for x = 0.66 we can see the gradual approach
to a threshold in increasing Ms. For Ms = 275GeV it is
evident that for low Q2 squarks cannot be produced and
the distribution coincides with the non-SUSY distribution.
Then apart from the discontinuity mentioned previously
the distribution rises in higher Q2.

0 0.2 0.4 0.6 0.8 1

Bjorken x

0

1

2

3

F
2 

/ α
em

Ms Dependence
√P

2
 = 1.3 GeV, √Q

2
 = 1000 GeV

Without SUSY
Ms = 175 GeV
Ms = 300 GeV

Fig. 3. Dependence of structure function on squark mass Ms

at a fixed target virtuality
√

P 2 and probe virtuality
√

Q2

600 800 1000 1200 1400 1600

√Q
2
  ( GeV )

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

F
2 

/α
em

Q
2
 Dependence for fixed x = 0.33

Without SUSY
Ms= 175 GeV
Ms = 225 GeV
Ms = 275 GeV

Fig. 4. x = 0.33

4 Conclusions

We see from Figs. 1-5 that if one can build a machine
for which values of Q2 approach 1 TeV2 (about twice
the squark production threshold) there is a substantial in-
crease in the value of F γ

2 for the photon. Indeed, the evolu-
tion between the SUSY threshold and 1 TeV is more than
doubled if SUSY particles, taken to have a mass of 175
GeV, are present. The difference between the structure
functions with and without SUSY in the middle range of
Bjorken-x is over 30%, which should be easily detectable.

The effect at Q2 = 1 TeV2 is, of course, diminished if
the SUSY threshold is increased. However, we note that
taking the squark masses to 300 GeV only has a small
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600 800 1000 1200 1400 1600

√Q
2
 ( GeV )

1

1.2

1.4

1.6

1.8

F
2 

/α
em

Q
2
 Dependence for fixed x = 0.66

Without SUSY
Ms = 175 GeV
Ms = 225 GeV
Ms = 275 GeV

Fig. 5. x = 0.66

effect on F γ
2 . Conversely, if the squark masses turn out

to be substantially lighter than 175 GeV1, (which is not
currently ruled out), there would be a significant effect on
the structure functions at values of Q2 significantly below
1 TeV2.

The effect also diminishes if the target photon is off-
shell, as will usually be the case. However, we see from
Fig. 2 that this effect is modest.

The results are fairly insensitive to the mass of the
gluino. This is not surprising as the gluino contributes very
indirectly - it can only be produced by a secondary emis-
sion from the target photon and then only probed through
a further interaction with squarks. Taking the mass of the
gluino below that of the squark, would have had a neg-
ligible effect as it is clear that it is the squark threshold
and not the gluino threshold that must be crossed before
there is any effect on the photon structure function.

In summary, we see that the effect of SUSY on the pho-
ton structure function provides a further good reason for
designing a large electron-positron collider that would be
capable of reaching values of Q2 above the SUSY thresh-
old for the middle range of Bjorken-x.

Appendix A

The contribution to F γ
2 of a left or right handed squark in

deep inelastic scattering on a photon has been calculated
[7],

1 The lowest value we take for the squark mass is 175 GeV
since this is above the threshold for t-quark and we find it
useful to make comparisons of the evolution of the structure
function in the presence of SUSY with that without SUSY but
with six active flavours

F γ
2,sq = 3e4sq

α

π
x

{[
2x(1 − x) + τx(3x− 1) +

1
2
τ2x2

]

× ln
(
1 + v

1 − v

)
+ [1 − 8x(1 − x) + τx(1 − x)] v

}

(A.1)

where,

τ = 4M2
s /Q

2

v = [1 − τx/(1 − x)]1/2

and esq is the squark charge in units of e.
We calculated this expression for the case P 2 �= 0,

where r = P 2/Q2. The above relation is recovered on
r → 0 with,

F γ
2,sq = 3e4sq

α

π
x

{
B(M2

s /Q
2)2(1/FG)(16x2)

+B(M2
s /Q

2)(1/FG)
×(−48x4r2 + 48x3r + 4x2r − 8x2)
+B(1/FG)(−12x4r3 + 12x3r2 − 2x2r)
+B(1 − 6x2r + 6x2 − 6x)
+ ln(F/G)(M2

s /Q
2)2(B/η)(8x2/b)

+ ln(F/G)(M2
s /Q

2)(B/η)
×(24x4r2/b+ 2x2r/b+ 12x2 − 2x/b− 2x)

+ ln(F/G)(B/η)
(1
2
+ 6x4r3/b+ 12x4r2/b

−12x3r2/b− 12x3r/b+ 11x2r/b− 3x2r

+4x2/b− 6x2 +
1
2
xr/b

−1
2
xr − 3x/b+ 5x− 1

2b

) }
(A.2)

where,

b = 1 − 2xr
F = 1 + η(1 − 2xr)
G = 1 − η(1 − 2xr)

B =

√
1 − 4M2

s x

Q2(1 − x− xr)

η =
B

b

√
1 − 4x2r

These equations are important in determining the γ →
squark splitting function i.e., the squark inhomogeneous
KS andKΓ terms. Also in determining the extra Bsq

γ term
in (2.15). The choice is dependent on the squark threshold
condition (2.14), which is function of both x and Q2. At
a particular Q2 there will be a region x > xs(Q2) where
squarks cannot be produced.
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